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Nonparametric Discrimination Based Upon
Inverse. Normal Scores and Rank Transformations

Stephen L. Koffler Douelas A. Penfield
N.J. Department of Education s Rutgelrs University

4P't.

Behavioral science decisions frequently involve the rational assign-

menf or classification of observations into one of a finite number of pop-

ulations based on an evaluation of-a series of measurements obtained on

the observations. The set of statistical procedures that conventionally

governs these decisions is known as discriminant analysis.

The'theorctical basis for discriminant' analysis was introduced by

Welch(1539) who adapted the hypothesis testing concepts of Neyman and Pearso.

Welch showed that a discrimination procedure that classified . p - dimensional

.observations Z into one of two populatyions T1 or II was equivalent to a
1 2

partitioning of the sample space 2 kite, two mutually exclusive and exhaustive

regions R. (i = obtained by evaluating the likelihood ratio function

at Z. Z is assigned to 11 when 01'5 value of the likelihood ratio is greater

than some appropriately determined constant K, and to E when the value
2

of the likelihood ratio is. less than K.1

It is possible that the classification decision. for an dbservation could

be in error; Z coule originate from any population whose density is non-zero -

at Z. In thc"two population model which will be the focus of this paper, two

errors of classification are possible:

I. The--p-rocechire can-assign Z\ \to Thabti -2- actually belongs to A .

2

2. The procedure can assign Z to 11 when Z actually belongs to 1.1 .

-2

When the likelihood ratio equal.SK, the usual procedure is to randomly assign
the observations to one'of the populations:



Associated with each error i probability of committing it (called. the

probability of miSclasSification), denoted by P(Zell (i,j= 1,2).-

.Welch(1939) showed that for the two potAllation situation, with obser-

vations drawn from knOwn distributions, the optimal solution tb-the'classifi-

-cation problem is

f
1
(Z) / f

1
(Z)- - (1)

whereJ (Z) is the density function of the ith distribution evaluated at Z.
i -

Z is classified- into II - if (1) is greater than constant K, and .into II .if- , -I .

2./
(1) is less than K: Equation (1) is optimal in ihe sense that it minimizes

P(-Z c ). K S defined as
i 3

K = C
12
q
2
/.0

21
q

1
(2)

a

where. C. ( i j = 1,2) is the cost of, m'nclaSsifying am observation from

II into 7 and q. ( i = 1,2) is the a priori probability that the observation.II.

i

belongs to ponulationlli (Anderson, 19.51).

Di-ocedures for Multivariate Normal Disiributions

Frequently data are collected that are representative of multivariate

normal distributions. When the populations are so.ilistributed with known

mean vectors and identical covariance matrices, (1) simplifies to

z'E71(.1 U ) + ;I )1E-1(11 U ) (3)-* -1 -2_ -1 -2

where is the common covariance matrix and p. '1,2) is the mean vector
. -

of II... When (3) is greater than log (4c), Z is classified as belonging to II ;

-c
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When (3) is 'less than log (K), Zjs ClaSsikied as beloniing t6 II .2

.Equation (3).is referred to as the Linear Discriminant Function(LDF).
P

If the'asta originate-'fromCmultivariate normal _distributions with

"knowri parameters,-but.the covariance matrices are not identical for-the two

populations,'the form of the likelihood raiio is quadratic.

--,-

/. .

.where, 11. and 'E. (i.= 1,2) are.the mean vector a mand covariance matrix, respectively;
-1. : 77'1

.
. ,

Y :-from P.. Equation (4) is called the-Quadratic Discriminant Function(QW.
i

1/221(Z -1 E -1)2 + TP 'E P 'E -1)'Z
*1 -

Ilap
2

IE

2

-lp
2

J
I

log[IZ / IE (4)^. * *1

and its classification decision is identical ta.that'of:the LDF. NIa4ks.&

Dunn(1914) have shown that under the assumption of multivariate normality

and unequal covariance matrices,the QDF misclassifies.fewer observations. than

the LDF.

Equation. (1) is7optimal only when the densities are known anecompletely

specified. It is inf;equept, however, that researchers encounter situations--

.)
where the,distributions from which their data are drawn are completely

specified"; UsuArlly, the densities Mare either completely unknown'Or are known

except 'for.one or more parameters: For these situations, the unknown para-

meterg' must be estimated from samples and proCedures eased on the sample estimates

developed to classify new observations.

Hoel & Peterson(1949) and Fix & Hodges(1951) determined that the best

sample based procedure is of the likelihoratio type where the sample

estimates replac4the unknown parameters (called "plug-in" procedures).

0
2
The classification constant is log (K) because of algebraic simplification.
When C

12
= C

21
and q

1
= q

2
,,log (K) = 0.
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Anderson (1951) deVeloped.a statistic that'is the sample based analogue to

., the Di' for data-samped from multivariate normal distributlins with a common

. but unknown covariance matrix and unknoln mean vectors. Anderson's statistic

.- is in the form.of (3) with the maximum likelihood estimates (T. and S) sub-
-1

stituted for the mean vector and. identical covariance matrix, respectively.
a

Uwg a similar argument, a sample based _Quadratic Discriminant Function. is

"analogous' -to (4), with .the maximum likelihood estimates (T. and Si).
---

replacink_the.unknown mean vectors and unequal covariance matrices.
I

Procedures for Unknown or Non- Normal Distributions-
_

q The LDF and QDF are optimal only whenthe data are multivariate normal.:

In. the past, hoWever, researchers-have-relied upon the sample based LDF or
. .

.. , .- .',0 . ..

OK to resolve the.classificatfon problem, regardless of.the underlying dist-

Tibutions:ef the data. Lachenbruch, Sneeringer & Revo(1973), Johnson

Ramberg (1978) and Koffler & Penfield(1979) have investigated the robustness

of the LDF and QDF when claSsifying observations from non-normal distributions

The three studiei showed that when data were drawn from such distributions,

the proportion of observations misclassifed using the LDF or QDF was

substantially altered from. what was expected Thus, the LDF and-QDF. are not

robust to the normality assumption and researchers could be misled by using

-either procedure when investigating non - normal distributions.

Several nonparametric procedures haVe been suggested as possible alter-.

__natives_te_the_LDF--o-r-QDF----fo-r-non=normaldata. Koff ler & Penfield (1979)

have empirically compared sevCral nonparametric procedures. That study showed

that procedures such as, the Nearest Neighbor with Probability Blocks

(Anderson. 1966;.Fix & Hodges, 1951; 1Gessaman & Gessaman, 1972) and the

6
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,°
°

tOftsgairden-Quesenberry density eStimator Moftsgaarden &Quesenberry, 1972)

cla-ssified.observations 'equally as_effectilitly as eit.her. the PV -or

when, data were sampled from multivarrate normal distributions and better than
. .

either procedure when data were sampled from non-normaIdi.stributions. How-
.

ever, these nonparametric procedures

generally require larger samples from

density function must be

have limited utility because they

each population- since -the entire-
,

.

estimated rather than simply unknown parameters..

Conover titAfta.ki (1978) have suggested another solutionto the classifi-n

catiCIA problem for non-normal data based on first transforming the data to

.

mak the di stri huti functions. approximately 41(irmal and then .applying the -

. ::sample -based LDF or QDF-to the transformed data.. -This, procedure is consider-

ably simpler tO. use than the other riOnparametric-alternatives requires

only one -step more than the L!)F or

observations to he classified.

QDF liainely, the ranking of the data and
..

'Conover Iman empirically consIrasted their suggested .classification

ProceOures with other procedures including the nonparametric ones of Koffler

7.
Penfield and the LDF and-QPF using the original data). They concluded that4.

. .

if the data ere normally distributed, the rank methods performed .equally
-

,ns-14.611 aS he.LDF and QDF; if the dafa,were non-normal, the rank transfor-

- s
--'471atioh-method worked betterthan the.LDP,or QDF and as ivell-as-any of the

nonparametrit alternatives. In allsinstancesr the measure of performance

tonsideredyas the overall proportion of miclassified observations.
I.

It should not be surprising that the rank transformation was an.appro-
-

pri coe"for the data. Many. nonparametric procedures, such as the

n-Whiney (Wilcokon) test, the Kruskal-Wallis-test and the Spearman rank,.



O

order correlation, are based upon rank transforMations and have been_shown

to be effective alternatives to their parametic counterparts. 'Furthermore,'

the rank transformation,has'been shown to work effectively.- multivariate

regression analysis (Than & Conover, 1977)- and in the analysis pf'experi-
.

mental data (Iman, 1974; Conover & Iman, 1976).

Normal Scores Type Transformations

A natural extension of theConover & Iman (1978-) 'stud.inVolveS the.

investigation of alternative-transfor4tions that couldbe usedtcf effectively
3

classify data from 01 types of distributions-.

The normal scores,. transformation is one ,thilt should becansidered. This

type of.tran'sformpticlin -cleives its values from various properties of the normal
7%

distribution. Two forms of the transformation are usually considered:

the eXpected normal order statistic (Iloeffding, 1951; Terry, 1952) and the
s

inver e normal score (Van der, Waerden,'1952, 1953, 1956).
. .

Fezts based on normal scores transformations have not been used as

uently .asthose based upon ranks. However, the results from those instances

where such transformations have been applied suggest that they have utilityV,
in a number of. situations, specifically for discriminant analysis.

The efficiency of one test (T ) relative to another (T ) can he deter -
1 2 .

mined by comparing the ratio of n /n , where n. is ths,sample size of_T.,
2 1 - 1 3

(i = 1,2), under the`-condition that both tests arc used to test a specific

hypothesis, have identiLla'and $ levels and, therefore, are comparable

with respect to level of significance and power (Conover, 1971).

Tests based upon the normal scores transformation have been extensively

used for the k-sample location. problem (k > 2). For the two sample problem
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the,Marin-Whitney (Wilcoxon) statistic has an efficiency relative to the

t-test. of 95.5t for:normal distributions, .100% for uniform distributions,
. _

=

are-mar:bc' infindte7for other diStributions.

A-similar test whiell utilizes a normal scores transformation has an

asymptotic relative efficiency to the t-test of 100!r when the t-test

-aS:sumptions are satisfied, and-greater than 100% when the t-test assumptions

are violated. The normal, scores testis more efficient thanthe Mann-Whitney

(Wilcoxon) test when the distributions break off abruptly (e.g..uniform er

exponential),, the rank test is_More efficient for distributions with heavy

.tails (e.g. logistic or Cauchy), and there is essentially no difference

between the two tests when the distributions are approximately normal

(Lehmann, 1975).

When k > 5, the Kruskal-Wallis test is generally used when the assumptions

of the one-way analysis of variance F test are not satisfied. Hajek &

Sidak(1967) dbriVed test statistics based upon expected normal order statistics

and inverse normal scores. Puri(1964) showed that the asymptotic relative

efficiency of Hajek & Sidak's normal scores test relative to the Kruskal-

Wallis test or to the F\test is the same as that of the two sample normal

scores test relative to the Mann-Whitney (Wilcoxon) test or t-test. Further-

more, Pratt(1964) has shown that these normal scores tests are for less sen,-

sitive to non-homogeneity of variance than is the F test or,the___K.ruskaL-

Wallis test.

Because of the efficacy of the normal scores transformation for the

location problem and its superiority to the rank-transformation-in certain=

asituations, it is of value to deterMine whether procedures.based

41,
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Mis

transformations can be used to resolve the classification problem for data

sampled from non-normal.distributions: A natural extension to ,the Conover'&,

Iman(1978) study is,an investigation of the effectiveness of classifying

observations with the LDF.and QDF based upon a normal scores transformation.

The purpose of the research described in this paper is to empirically

'contrast- classificition procedures based.on normal scores with, those based

upon ranks and upon the original data'when the data originate fron both

nornal and non-normal distributions.

Methodollogy,

To estimate the LDFand QDF parameters, criterion samples of varying

sizes were generated for four types of two dimensional distributions. The

four distributions considered 'were the bivariate normal distribution and non-

normal representatives from three classes of distributions: 1) finite range

..(logit normal); 2) range flog.normal); and 3) infinite range

(inverse hyperbolic sine normal). In.all instances the two dimensions were
. -

independent.
S.

The three non-normal distributions were generated from the Johnson(19491

system of distributions. To obtain the required non-normal samples, normally

distriUted random variables were generated and .then the appropriate inverse

transformation applied.'The Johnson system of transformations is summarized

in Table I. In Table 1 the variable x is normally distributed, while the-
'

variable y is distributed according to the appropriate non-normal. distribution-.

An algorithm by Ramberg .& Schmeiser (1972), based upon the inverse function

of the. lambda distribution, was used, to generate the normal deviates. Random

L

10
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deviates from a uniform distribution were needed to obtain the nortal

clviites. A multiplicative congruential procedure developed by Kossack &

Henscfte (-1975) was used for this purpose.

TABLE 1

TRANSFORM1ONS (AND THEIR INVERSES)
THAT GENERATE THE JOHNSON .(1949)

SYSTEM OF DISTRIBUTIONS

pisimpTioN. TRANSFORMATION ,'INVERSE

0

Log Normal y .= log x 0<x<00 x = EXP (y)

Logi t Normal y log(x/l-x) 0<x<1 x = EXP (y3/

4.
nvers'e: Hyperbolic y = Sinh (x) occ<x<co x = Sinh(y)
Sine NorMal

1 + EXP(y)

-
.The bivariate normal-distributionS. that x wcreused. to generate the

samples for N and 11'..each had the identity matrifor its
0 1 2

covariance matrix. _The mean vector for IT was (p,O) andfor IT
2
it was

For'each of the four distributions, samples were generated for each
.

non-normal

combination of sample size [ In.,n ) . (8,8), (8,27),, (8,64), (8,200),

. (2i,27), (27,04), (27,20),,,(64,64), (64,200),.(200,200)1 and first CompOnent
)

Of the mean vector for'll ( p =,1,2).3 In total:there were jamples'drawn from

twenty combinations of (nl,n2).and4PEOr each distribution.

Tile sample based LDF and 1.?DF w&-e.wsed to establish the'classificatia

rules, assuming equal costs of misclasnfiOpticin and equal ,a priori

3
These values of n ,n and u were selecred tOkparallel-tIpirdous studies,'
including those o-f Conover & Iman (1978) Ad KOfflerk.P;iifield (979).
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,

probabilities of group membership (i.e. lag (K) = 0). As previOusly
_ --,

_
-

. ,

outlined, both the LDF and QDF involve the estimatiorl'of the population means
g

and the.covariance matrix (either pooled for tire LDF or-separate for the

'QDF) from the criterion samples. These estimated values are then substituted

.into '.(3) and- (4). The parameter estimates for the LDF nd QDF were,:

obtained in three ways,-using the raw data, the ranks o : he data and i)c

icorresponding' inverse normal scores.
,7

OnCethe LDF and QDF parameters were estimated for each combination of

sample size and first Component of the mean vector.for R , index
1._ .

samples consisting of 10b0 new observationS from each original-population
. .

were generated. For each data point;_he rank and the inverse normal score

werceomputed:, Each Value. of the index samples was entered into (5) and

(4) and the classification of the value. determined: The proportion of mis-

'classified observations for each sampleandever all samples was obtained.

In all there were. six classification metKods
-4

studied'(the LDF and QDF based

on the raw data, ranks, and inverse normal scores).
.;.

The process was .repeated .20 times. Thus, the population-parameters

were estimated.20 different times.andeach time.2000 observations were

classified. The estimated probability-of misclassification foreach sample
64, -

-;was baS'ed on 2.0,006 observations and the overall. estimated probabilities of

misclassifitation were based on 40,000 classifications for each combination

of n ,n and 11.5.
1. 2

!' The inverse 'normal scores transformation-differs little from the., -
.expected normal order statistic transformation. The two transformations
are asymptOtically equiValent and structurally identical (McSweeney &
Penfield,-1968) The inverse normal scores transformation was used because
of its ease of computation.`

All computer prqgrams to generate the data and classification procedures
were. written'ii the FORTRAN IV progriMMing language.

12



To obtain the ranks of the-data; the two criterion samples of size

and n 'were-combined. All observations in each of the-two dimensions
1 2

were then replated by thei'r corresponding rank 1 for the smallest

observation to rank N (N = n1 + n2) for the largest observation in each

dimension. Each dimension was ranked separately and.ranks of tied obser-

vations were assigned randomly:

,e
. To obtain the:rank fore ach of the 1000 observations in (the index

samples, each new. observation was compared dimenSion. by dime sion with

all N original observations. PDT each dimension of the new observation,

.the original score was replaced 'by a number obtained by linear interpolaton

between two adjacent ranks from the original criterion samples. These

interpolated ranks represented the placement_of that dimension among the

. corresponding values of the same dimension in the N criterion sample

'Observations. (Conover F: Iman, 1978).

The derivation of the Van der Waerden inverse normal. scores transfor-

mation is .based.upon the ranks of the aaid. For this transformatiOn, assume

the rank of theith largest observation:in-a particular diMension is

denoted by Ri.and 0(X) -represents the cumulative distribution function of

a standard normal random variable. The Van der Waerden transformation is

derived first by dividing_each of the ranks R by the quantity. (N + 1).

C7This creates a distribbtiOn ofscores-in-the interval. (0,1).- Then, by con-

-sidering.R./(N + 1). as a percentile of a normal distribution

(i.e 0(X.Y = R /(N +.1)), the X values can be determined by performing16 1.
i

.

the'inverse operation. Tb t is, if O(Xi) = Ri/B + 1), then

X =4)-1(R./(N + 1)). Th s form. the Van der Waerden inverse normal scores.
1

13.
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.Optimal Probability of Misclassification

For each of the.distributiOns, it is possible to determine the

Optimal probability of misclassification (i.e. P(Zell IH.), when the
1

population parameters are completely specified and the distributions

known).6 Anderson (11?51) haS"shown that the optimal probability of mis-....
classification associated with theL.I.DF As denoted by'N-A/2); Where'A2

is the Mahalanobis distance between the two populations.? Since the

variatt, normal distributions in the present study were independentand-

2 -.F.the only.nonzero mean component is p,
Q2

to p . Hence,.

,

st(.-A/2). = 0(-p72).

. The correspondingyalues for the optimal probability of ristlassi

cation for the biVariate normal distributions under study are N-1/2). =-0.308S

amd:d..,(-2/2) = 0.1587. Anderson(19S1)-has shown that the, LDF minimizes :the

sum 6.5 the individual probabilities of misclassification (i.e. P(1 /2)+P(2 /1)).

In the case of multivariate normal distributions,this occurs-when

PH/2) = P(2/1).

Since the non - normal data were obtained from non-linear transformations

of data drawn from bivariate.normal distributions, those data can be trans-
. .

formed' back to the bivariate normal distributions by perl2riming the inverse

operation. The optimal classification procedure for the non - normal data

involves transforming the data to normality and then applying the LDF.

Thus, the optimal probability of misclassification for the non-normal data

is identical.to that of the original bivariate normal. distributions.
.

6 For simplicity, let P( Z c 11 I R2) = P(1/2), P( Z c 1T- = Pt'2/1)

and P=.; the overall error rate.

This is true. When there are equal costs ofmiclassffication, equal a
priori probabilities of group membership and completely.specified nulti-
variate normal distributions with equal covariance matrices.

14



-13-

For each combination of n ,n
?

, and 1i, the .proportion of misclassified

observations, p(1/2), P(2/1)4nd-P, were determined and served as.the per-

formance criteria and means of comparison among the six procedures.8

Given 'the optimal values for the probabilities of misclassification, the

effectiveness of the six sample based procedures can be determined by Com-
,' '

paring the prOportions of misclassification to,the optimal rate. The
- .

.

-empiricany.determined proportions of misclassifiCation'are estimates of (;)

the optimal values, and the proceJurethatprovides tlie.best estimates is

considered to he most. offectiVe.

Two' criteria for comparison were',Considered. The first was the relative

disparity between P(1/2) and P(2/13 for each. f the procedures. The .
_

,-_it ,.. .

. . .%smaller theAi's-Parity, themore effective the (assuring that-the
ek , >.

overall pron
r

ton of. misclassified obFervation'approachedthe optimal-

probability.). The second criterion was the overall error rite. These
-

-were. compared with thcoptimalyaluds,and a close agreement indicated- an

-effective procedure. Tests of proportion and associated post :hoc procedures

(qarascuilo, 1966) were Used to analyze the data. Ptis important to note

that in many instances while the differences among the proportions were

small, they were "statistically significant '(n < .05).

Results

'-lhe results for each of the four distribUtiOns are presented-in

Tabl6s 2,4,5, and 6.9.An examination, of the tables shOws'that the

8
P(i/j) is.tho empirically determined estimate of P(i/j). is'the overall
error rate and is,equal to (P(1/2) + P(2/1)1/2 because equal numberi of
observations were cla&sified from each sample.- These estimates represent
the average proportion of misclassified observations for the 20 trials.

The following abbreviations are used for the remainder of the paper:
1,Dr = LDF procedure based on the raw data; RLDF = LDF procedure based on
the ranks; ILDF = LDF procedure based on the inverse normal scores. A
similar set of abbreviations are used for the QPF procedures.

15
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proportion' of misclassified observationi for the rank transforriation or

for the,inverse normal-scores transformations was identical for all of the

distributions. This is to be expected since the non-normal data were

derived from monotonic transformations of the normal data. Because,of

ihemonotonicity of the transformations, the order of the dataremained

unchanged regardless of the distribution. Therefore, the ranks and inverse

normal scores of the original data'were unchanged, the sample estimates.
1-

1]..

of the population parameters were likewise unthanged, and the classification

\.

decisions were'identicaL

Normal' Distribution .

_

Table"2 presents the results fdr the bivariate normal. samples of data..

For these data, it was expected that the performance of the 'EDF and QDF

should ix' almost identical because. the covariance matrices were estimated

from populations both0 having the_-1-den ti-ty covariance-rnatri-x-:---Frdp 141

it is evident that when the two covariance matrices 'are identical, the"

QM' is equivalent -to the LDP.

1

hen n = 8, the three procedures"based on the LPF had approximately

the samesame overall proportion of/Misclagsified observations and. discrepency

between P(1/2) and R(2/1). In all casts, the estimated overall proportion

of.misclassification was significantly greater than the optimal value of

0.308S. This result was not, unexpected since. the sample mean and

covariance estima es for 11 were based upon eight observations and thus
i

had a Large stand rd error.

The three procedures based on the qprmisclassified considerably more

16
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MEIN PROCEDJRE P(1/21

18 ,d )

4P(2/11 PM

LOF 0.397 0.314 0.355

OF' 0.451 0.356 406
41)F 0.382 0.328 0.355

ADJF 0.450 0.341 0.396

110 0.376 0.329 0.353

123F 0.451 06334, 6396

4`.1

ridiE 2

RESULTS .FN 'THE 1ORMAt DISTRIPUTIN

TJTAL POPUTION OF PI1CLASSIFIED OBSEOVATIJNS

id 0/ 1
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obseryationsthan t se based on the LDF. The fact that the covariance

matrix for IT was base on 50 few observations also provides an explan-

ation for-the large'd. ferences between the LDP and QDF type procedures -

a, the pooled. sample, covariance matrix was robably very different from.the
.

-separate'covariancc matrices.'

When n = n > 8, all six procedures bisclassified approximately the
1 -

.

same proportioncof observations and were approximately.equivalent to the
.

-optimal value. ln,all cases`, thedifference between N1/2) and P(2/1)
.1

was smallest for -the LDThasedOfi the original data; hoFever, the dis7

crepency for all ofthe.procedure.s.yas similar.

Won (n ,n ) or (27,200), the three LPF nrocedures minimized

. fl.le;nronort:ion mistla55ified.,olTservations; however, the roportion'ef

,

'ove 1,errors. for thevtbree QDF procedures did not differ substanti7ally
./

'frori, the ones for the LDF, 'especially oilor the RQDF. When n -= 27 and = 64,
1 .2

- the dlf erenco
-
betWeen,15(11:b and P(2/1)was approximatelV.equal for all of

the procVures; when.m-,= 2.7. and n = 200, the discrepencies wereismallest
. 2

for the ILDF asid'iQDr. However, hone of the prOcedures exhibited discrepencies

that wCil:::-ekfcpsive.-When.(n ,n ) = (64,200) , all'ofthe procedures were
2 --

. -
as effective in terms of the overall error rate. For the relative

'

discrey'betwben 1).(1/ ) and P(2/1), the OF, and QDF,.base&.on the original

7-.data, Minimized the difference, while the RLDF and RQDF exhibited a relatively
A

severe inflailon/defration-phenomenon (i.e. P(1/2) was considerably smaller

than the optimal value while P(2/1) was considerably larger).

li = .2

There was less of a disparity among the six procedures when 11 If 2

19
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s. as the sample sizes increased, the QDF effectively classified,the data -y

than when _p = 1' for the biv

-17-

iate normal data. When n = 8, the three
1

pre-eedures based on the LDP were again most effective in minimizing the

overfill error rate. However, for the two largest values of n ;the RLDP,
2

procedure was not-as accurate as the LDF or ILDF. Additionally, the dis-

crep y between P(1/2) and P(2/1) was considerably larger for. the RLDF

.

than for the LDF- or ILDF.

8, there was no appreciable difference among the
gm=

or the discrepencies between P(1/2) and P(2/1) for

Additionally, as the tample size increased, P

the optimal error rate. For the situation when

When n = n
1 2

overall error rates

thesix procedures.

approached 0.1587,

n -# n , there was no discernible difference among the overall error2
r

rates -when 71)=(21014ever; .101" ).7.-P7PW(/)I -2

the ADP and RU' classified larger numbers of observations incorrectly than

the other four procedures. Additionally, for all three of these sample

sizes, the RLDF and RQDF discrepencies were significantly larger than the

discrepe4cy' for the other four procedures.

'Summary
.

NEk

As expected, the .LDP based on theriginal data proved to be an.effective
. -

classification' procedure for the bivariate normal. data. Furthermore, .

because the_separate covariance estimates and pooled covariance estimates
0

began to converge to the identity matrix.

In all instances, the RLDF and ILDF proved to be as effektivs as the

LDF. The only exception to this occurred for the RLDF when the sample

sizes were most disparate. When the sample sizes were equal, there was no

20



discernible difference-in the clas-sifiCation ability of the three

-

LDF methods.

Non - Normal ,Distributions

-Table 3 il/Ust÷ates the means and variances for each dimension of the
, .,...

_
, .

three non - normal distributions. Cleaily, the variances for41,are
Y -

.

markedly different from that for II gpr each non-normal samples.
_ . .

.

The difference between thee'tWo populations is only 'he first dimension

of the mean vector, however, this affects the entire classification

process through the sample covariance maIrix. It was therefore appropriate

to consider classification according to the QDF procedure far' these data.

Recall ffat the procedures.basedUpon.the.ranksd_the invers4,normal-
.%

scores were. identical for all-of thanon-normal distributions and for the

bivariatenoimal.distri6utions'because the, transformations were monotonic.

Recau/c of that, three non-normal distribbtions can be considered

togethci with respect to the:cjassification of the index data based on the

-rnk,..and inverse normal 'scores procedures. TW must, however, be considered
y

senaritely..with -respect to the LDF andQD5 based on the. origi 1 data.
. .

_ An examination of the results reveals that.theLDF and QDF assified a.

,,
both the log normal and,inverse hyperbolic- sine-narmal data Similarly,.

while they claSsified. the logit ncirmalAata differently from the other

twb, hat similarly to thc-bivariate normal data. Hence., the results for the

classification of the log normal and in
l

will bediscussed toge her and the,
t1

21
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TABLE 3

MEANS ,.AND VARIANCES OF THE NON-NORMAL DISTRIBUTIONS
FOR SPECIFIED MEANS 05 THE NORMAL DISTRIBUTION

fa2

Log Normal

62
X

0 1.65 4.67.
1 4.48 34.51

- 12.18 255.02

Y

Logit Normal

. nx

1 g:57f
0 0,043

0.029
0.84 0.019

r

Inverse Hyperbolic: Normal

n .x

0.00

1.94
5.98

3.19
9.65
4.63\ 4

SOURCE: Lachenbrusb., Sneeringer and Revo. Robustness'of'the Linear and
Quadratic Discriminant Function to Certain Types of Non-Normality..
Communicabonss in StatistiCs1973, 1-, S4.

ao2
Y

is the variance of the underlying normal distribution.

V. is the mean of the-underlying normal distribution'.
ry

9 ,is the. mean of the transformel non-normal variate.
x

_

o2 is the variance of the transformed non - normal variatc.
x
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Log Normal ,& Inverse Hyperbolic Sine Norma] Distributions

The'results for these data appear in Tables '4 and S. For all combi - .
7--

ations of sample size and p, the LDF and QDF based on the original data'.

significantly misclassified more observations than the procedures based upon

ele rank or inverse normal scores transformatioSs. The LDF and lQDF based on

the original data further'exhibited a severe inflation/deflation effect.

The LDF and QDF'were.clearly inappropriAte for these types of non-normal

,distributions. Thus, the remaining discussion will consider-only the friiir

nonparametric procedures.

=

For n = 8, the RLDF and 1LDF procedures minimized. the overall
1..

error-rate; for all otter combinations of sampl size; all of the four t

'

nonparametric procederes were eqbv,44:s effective, with the exception of

the IQDF when (n ,n) = (27,64) or (27,200). The inflation/deflation
. 1 2

effect related to, the discrepency between'P(1/2) and P(2/1) was smallest

for the ILDF; hol4ever, in Most instances, there.was little difference

among-the four procedures.

=

The pattern for this value

pattern when .0 = 1. When n

in minimizing' the 'overall err

was essentially identical to the

, the RLDF and ILDF'were most effective

r rate. As the sample size increased, the

four procedures became indistin ishabl in terms 'of P and P approached

the optimal rate of 0.1587. However, upon examination of P(1/2) and

P(2/1), it became apparent that the inflation/deflation effect was substat-

tial for both the RLDF and RODF 'in many instances. The discrepency for

2
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TABLE 5
. ,

RESULTS FOR THE INVERSE HYPERBOLIC:SINE NORMAL OISTRIRUTION
TOTALPRJPLATION mIscucssrFIEJ OBSERVATIONS
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the ILDF and IQDF were approximately the same and smaller than that for

the rank type -procedures.

Summary

For these types of 'non-normal distributions; the LDF and QDF based

upon the original data were clearly inappropriate as a classification

procedure. The proportion of misclassified.observations was substantially

larger than the optimal rate, and also substantially larger than the overall

error rate of the nonparametric procedures. The.discrepency between P(1/2)

and 1(2/1) was substantial.

When u = 1, the procedures based on the ranks and on the normal scores

were approximately equal. As p increased (i.e. p = 2) and the-distance

between the two distributions increased, the.procedui.es based on the

inverse normal'scores transfOrmation classified the data more appropriately

based on the criteria of P(1)2) = P(2/1).

Logit Normal Distribution

Table 6-presents the results for the logit normal distribution.. As

outlined previously, the results for. the rank and-normal scores-type

procedures were identical for all of the distributions. Therefore, the only

difference concerns whether the procedures based on the LDF and QDF. for the

original data were appropriate for the data. For the.logit normal samples,

the LDF and QDF classified the data equally as well as-the four nonpara-

metric.procedures. In fact, the results for this distribution were almost

identical to the results for the bivariate normal distribution. For that

reason, a discussion of these results is omitted and the reader should

consult the section outlining the bivariate normal results..
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Conclusions

-25-

With samples drawn from bivariate normal distributions with equal

covariance matrices, the proportion of observations misclassified using

the LDF procedure based on the. Tanks or the normal scores of the data was

not considerably different from that for the LDF based on the original

data. Furthermore, the RLDF and IQDF proportions of misclassification

were almost equivalent to the optimal values in the bivariate 'normal case.

Hence, it is to be expected that they would also be approximately equal to

the optimal value for the non - normal situations because those.procedures

are not affected by the transformation from normality.

For the non-normal distributions, the LDF. and QDF were clearly inapprop-

riate. They type of non-normplity,howevei,appeared to hove some effect

on the performance of those procedures. The LDF and QDF suffered least,

when the distribution was bounded above and below (i.e. for the finite

range logic normal distribution). When the range was semi-infinite or

infinite, there was substantial inc.ease in the overall error rate and the

inflation/deflation was considerable.

A discussion of sample size is appropriate. With the normally dis-
41-

tributed samples, little was gained by using sample sizes larger than

27 for any of the procedures. This was also true for the procedures

based on the ranks and inverse normal scores for the non-normal data.

.This result contrasts with the nonparametric methods studied _by

Koffler & Penfield(1979) which required a fairly large sample size and

showed improvements as the sample size increased beyond 64."

0

When n = n , i.e. the sample sizes for estimating the density
2. -

function parameters Were equal, the four nonparamdtric procedures classified

_31
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the data equally as well.. When the sample sizes were unequal, the procedures

based on the inverse normal scores tended to more effectively classify the

'data. For those situations the procedures.based upon the ranks exhibited

an inflation/deflation' effect.

In.summary, when the distributions.aie. normal, the -rank and inverse
(1.

normal scores metodis are effective substitutes for the-LDF arid QDF.
.

When the populations-are non-normal, the LDF meth4ds based on the ranks

or the-inverse normal scores are more'effective than the LDF or QDF methods

based on the raw data Finally, when the criterion sample sizes are unequal,

the inverse normal scores approach is more desirable than the rank approach.

.When the criferion.Sample.sizestare equal.;. either of the two procedures. can

be used..

4.
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